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Abstract 

The complex [4-BrC,H,CHzCr(1,4,8,12-tetraazacyclopentadecaneXH,0)1 ‘+, (RCrL(H,O)‘+) is oxidized to RCrUH20j3+ which 
then rapidly homolyses. The rate constants were determined in aqueous solution at 25.WC for oxidation by IrCIi- and 
2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonate) monoanion, (ABT!?); the values are (1.29 f 0.11) X lo4 dm3 mol-’ SC’ and 
(1 51 f 0 17) x 10’ dm3 mol-’ s-l respectively. The estimates of reduction potential E” and self-exchange rate constant k,, were 
mide fo; the couple 4-BrC,H,CH,CrUH20) ‘+/‘+: E” = 0.8 f 0.2 V; 5 x lo-* dm3 mol-’ s-l < k,, < 7 X lo* dm3 mol-’ s-l. 
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1. Introduction 

Transition metal complexes containing metal-car- 
bon bonds are involved in various oxidation mecha- 
nisms [l]. Unlike inorganic complexes, where the metal 
may exist in two or more stable oxidation states, a 
one-electron oxidation of an organometal RM often 
yields an unstable species RM+ which readily decom- 
poses by homolysis: RM++ R’ + M+. The series of 
complexes (H20)$rR2+ is oxidized by strong one- 
electron acceptors such as Ni(cyclamj3+ (E” = 1.0 V), 
Ru(bpy)g+ (E” = 1.27 V) and NO+ (E” = 1.51 V), 
yielding (H20),CrR3+ which quickly decomposes into 
Cr(H20)i+ and organic products derived from R’ [2- 
41. 

Replacement of four water molecules in (H,O),- 
CrR2+ by a macrocyclic ligand L-(L = 1,4,8,12- 
tetraazacyclopentadecane) lowers the reduction poten- 
tial of the complex and hence causes the Cr-C bond to 
become more susceptible to oxidation. Even a mild 
oxidant such as I,(I,(aq)/I;-; E” = 0.21 V> 151 can 
oxidize RCrL(H20j2+ (R = ArCH, or 2’-alkyl) to the 
extent to initiate a radical chain reaction [6]: 

RCrL(H20)2++ I 2 + RCrL(H20)3++ I;- (1) 
The relatively low reduction potentials of the macro- 
cyclic organochromium complexes offers certain advan- 
tages in studying the electron transfer reaction con- 
cerning the Cr-C bond. 
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One of the challenging problems is to obtain the 
RCrL(H,0)3+/2+ reduction potential E” and self-ex- 
change rate (SER) constant kll, which is difficult ow- 
ing to the instability of RCrL(H20j3+. The approach 
suggested here is based on kinetic methodology. It uies 
two oxidants for a given RCrL(H20j2+ complex ‘to 
estimate the E” and k,, values. 

_ 

The two oxidants were chosen such that one is weak 
(2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphanate) 
(ABTS’-/2-); E” = 0.43 V) [7] and the other strong 
(IrCl~-/3-; E” = 0.89 V) [8]. With the weak oxidant, 
the retarding effect (of ABTS2-) can be measured, and 
a lower limit can be set for the kinetic lifetime of the 
purported product, RCrL(H20j3+, based on the mag- 
nitude of the retardation. An upper limit of the life- 
time of RCrL(H20)3+ can be set by the reaction rate 
of RCrL(H20j2+ with the strong oxidant. A combina- 
tion of these limits allows an estimate of E”. From the 
Marcus [9] equation, the SER constant k,, of the 
RCrL(H20j3+12+ couple can then be calculated. 

2. Experimental section 

2.1. Materials 
The complex 4-BrC,H,CH2CrL(H20)2+ was syn- 

thesized and purified by methods given in the litera- 
ture [6]. The concentrations of the complexes in the 
kinetic studies were calculated from the molar absorp- 
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tivities at the following wavelengths: 245 nm (E = 1.07 
X lo4 dm3 mol-’ cm-‘), 281 nm (E = 9.82 x lo3 dm3 
mol-’ cm-‘), 303 nm (E = 8.83 X lo3 dm3 mol-’ cm-‘) 
and 361 nm (E = 2.40 x lo3 dm3 mol-’ cm-‘) [6]. The 
radical ion ABTS- was generated by oxidation of 
(NH,),ABTS (Aldrich) with an equivalent amount of 
(NH,),Ce(SO,), - 2H,O (Sigma) and the structural 
formula of ABTS2- is as follows: 

- 03s~s~N-N~s~so’ AIjTgz- 

FH 2 5 !H 2 5 

The radical ABTS’- persists in solutions for several 
weeks; it is characterized by a number of UV-visible 
absorption bands of which the peak at 660 nm (E = 
1.20 X lo4 dm3 mol-’ cm-‘) [lo] was used to follow its 
reactions. Sodium hexachloroiridate(IV) trihydrate, 
Na,IrCl, - 3H,O, was purchased from Aldrich and 
used without further purification. Its concentration was 
determined spectrophotometrically at both 487 nm (E 
= 4.05 X lo3 dm3 mol-’ cm-‘) and 460 nm (E = 2.08 
x lo3 dm3 mol-’ cm-‘) [ll], and its reaction with the 
organochromium complexes RCrL(H20j2’ was moni- 
tored at 487 nm. 

2.2. Techniques and kinetics 
Kinetic measurements were conducted in aqueous 

solutions at 25°C with [H+] = 1.0 x lop2 M (perchloric 
acid) and ionic strength 0.20 M (maintained with 
sodium perchlorate). In the controlled experiments, a 
variation in [H+] (pH 2-3) was employed whereas the 
ionic strength of 0.20 M was maintained. Air-free con- 
ditions were maintained in all experiments by a blanket 
of argon. Kinetic data were collected with a Durrum- 
Dionex stopped-flow spectrophotometer controlled by 
the On Line Instrument Systems data acquisition and 
analysis software. Kinetic data were analysed by a 
non-linear least-squares fitting to the equation D, = D, 
+ (D, - 0,) exp(-k,t). 

2.3. Cyclic voltammetry 
A three-electrode one-compartment cell was con- 

nected to a BAS 100 electrochemical analyser for cyclic 
voltammetric measurements. An Ag/AgCl electrode 
was used as reference, and a Pt wire as auxiliary. Both 
glassy carbon electrodes (with diameters of 1 mm and 4 
mm respectively) and Pt disc electrode (4 mm diame- 
ter) were employed as working electrode. All the elec- 
trochemical experiments were conducted in a 0.1 M 
Me,NBF, acetonitrile solution under an argon atmo- 
sphere. 

3. Results and discussion 

3.1. Oxidation of 4-BrC,H,CH,CrL(H,O)’ i 
In the reaction with 4-BrC,H,CH,CrL(H,O)‘+, the 

ABTS- radical functions both as an oxidizing agent 
(E” = 0.43 V) [7] and as a radical scavenger [lo]. The 
oxidized organochromium complex [61 RCrL(H20j3+ 
subsequently undergoes homolysis, with the resulting 
radical forming an adduct with ARTS’- in a known 
reaction [lo]: 

RCrL( Hz,)” + ABTS’- % 
2 

RCrL(H20)3++ ABTS’- (2) 

RCrL(H20)3++ H,O * R’+ (H20),CrL3+ (3) 
R’ + ABTS.- (k‘Y - R-ABTS- (4) 
This scheme requires a stoichiometry of lRCrL- 
(H20j2+ : 2ABTS’-, which is confirmed by spec- 
trophotometric titration (Fig. 1). 

The rate equation derived on the basis of reactions 
(2)-(4), with the steady state approximation for [RCrL- 
(H20>3’3, is 

-d[RCrL(H20)2+] 

dt 

k,k,[AE%TS’-] [ RCrL(H20)2+] 
= 

k, + k_,[ABTS2-] 

= k+[RCrL(H20)2f] (5) 

-.02 . I 1 7 - I 

-9 -7 -5 -3 -1 I 3 5 

10m XtlAl-21 pBrC&CH2Crft1), mot C’ 

Fig. 1. Spectrophotometric titrations of 4-BrC,H,CH,CrUH,O)*+ 
by electron acceptor A showing 1: 2 stoichiometry as in eqns. (2)-(4): 
l , m = 5, A = ABTS-, monitored at 660 nm with an optical length 
of 1 cm; o, m = 4, A = IrCI~-, monitored at 487 nm with an optical 
length of 1 cm. 
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With ABTS- ((1.2-12.0) X lo-’ M average concen- 
trations) in excess over 4-BrC,H,CH&rL(H,O)‘+ 
((2.1-5.9) x 10m6 M), and with no added ABTS’-, the 
expression reduces to k, = k,[ABTS’-I. This is illus- 
trated in Fig. 2. The average value of k, is (1.53 f 
0.11) X 10’ dm3 mol-’ s-i in six determinations. A 
series of seven experiments was then done with added 
ABTS2- (range of average concentrations 7.0 x 10m6- 
3.39 x 10m4 M) and constant [ABTS-1, (9.32 x lo-’ 
M). Values of k, become smaller with increasing 
[ABTS*-1, as expected from eqn. (5). A non-linear 
least-squares fit to eqn. (5) affords an independent 
estimate of k, = (1.51 kO.17)~ lo2 dm3 mol-’ s-l, 
and the ratio k-,/k, = (6.7 f 0.70) x lo3 dm3 mol-‘. 
The effect is displayed graphically in Fig. 3 by rear- 
ranging eqn. (5) to give 

k, = k,[ABTS’-1, - ~k,[ABTS2-1, (6) 
3 

The oxidation of 4-BrC6H4CH2CrUH20)2+ by 
IrCli- also proceeds with a 1: 2 stoichiometry (Fig. 1). 
The scheme is analogous to eqns. (2)-(41, except that 
the fate of the radical is oxidation to a mixture of 
alcohol and halide [12]: 

RCrL(H,O)“’ + IrClz- G=$= RCrL(H20)3+ + IrCli- 
2’ 

(2’) 

RCrL(H20)3++ H,O * R’ + (H20),CrL3+ 

(3’) 
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Fig. 2. A plot showing the linear variation in k, with [AElTS- ] in 
expenments Hrlthout added ABTS*-. The inset shows the kinetic 
trace and the least-squares fit to it, for an experiment with 
[ABTS’-1, = 5.0x 10m5 M, [4-BrC,H,CH,CrUH,O)‘+], = 3.0x 
10e6 M, [H+]= LOX lo-* M at I= 0.20 M and WC, and an 
optical length of 2 cm. 
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Fig. 3. A plot according to eqn. 6, illustrating the inhibiting effect of 
added ABTS’-. 

R’ + IrClz- + H 2 

ROH + IrClz- + H+ (7) 

RCI + IrCl,(H,O)*- (8) 

Kinetic measurements were conducted with either 
reagent in tenfold excess. In all, the concentration 
variations were [RCrL(H20>2+]0 = 1.55 X lo-‘-2.44 X 

10m4 M and [IrClg-1, = 5 X 10e6-4.5 X 10m4 M in 11 
experiments. The reaction obeys a second-order rate 
law 

-d[RCrL(H20)2f] 

dt 
= k2,[RCrL(H20)‘+] [IrClz-] 

with k,, = (1.29 + 0.18) X lo4 dm3 mol-’ s-l. Con- 
trolled experiments show that reaction rates are inde- 
pendent of added IrClz- concentration over the (O- 
1.0) x 10e3 M range and the oxidations of 4- 
BrC6H4CH2CrUH20)2+ by both ABTS- and IrClz- 
are independent of [H+] over the pH 2-3 range. 

3.2. Estimation of E” and k,, of 4-BrC,H,CH,CrL- 
(H 0)3+‘2+ 2 

Only an irreversible oxidation wave at about 1.2 V 
was detected over the range from -0.10 to 1.40 V 
(with respect to a normal hydrogen electrode) up to a 
scan rate of 50 V s-l, consistent with the expected 
instability of the RCrL(H20)3+ complex. Only single- 
exponential kinetic profiles were obtained in the reac- 
tion between 4-BrC,H,CH,CrL(H,0)*+ and IrClz- 
under all the concentration conditions. The absence of 
a second stage, even with the highest IrClz- concen- 
tration applied (4.5 x 10e4 M), allows us to set a lower 
limit for k,,, namely k,, > k,,[IrC12,-I,, = 60 s-l. The 
same limit of k,, should hold for the oxidation by 
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ABTS’- as well (k,, = k,). Since the ratio k,/k, is 
already known (6.7 x lo3 dm3 mol-‘1 for ABTS-, we 
can set broad limits on k_,, namely 4 X 105-1 X 1O1’ 
dm3 mol-’ s-l, which combined with k, = 1.5 x 10’ 
dm3 mol-’ se1 and E” = 0.43 V (for ABTS-/*-l 
affords an estimate for the reduction potential of 4- 
BrC,H,CH2CrL(H20)3+/2+ of 0.89 V > E” > 0.63 V. 
We therefore adopt the value E” = 0.8 k 0.2 V. 

Even though this value is rough, it is already much 
more concrete than the upper limit of 1.2 V based on 
the cyclic voltammogram. Generally speaking, using a 
kinetic method to determine thermodynamic proper- 
ties such as E” demands more time than a direct 
electrochemical method such as cyclic voltammetry, but 
its effectiveness is unique in handling problems involv- 
ing unstable reactive intermediates. 

The Marcus [9] theory relates the driving force and 
SER constants k,, and k,, to the overall cross rate 
constants k,,: 

2In k,,=In k,,+ln k2*+ &(Ezx-Efe,) (10) 

Substituting into eqn. (9) the known Ez, and k22 
values of IrC1~-/3- (Table 1) and the Efed value of 
BrC6H$H2CrL(H2013+/*+ (0.8 V) together with the 
k,, value (for k,,) measured in reactions (2’1, we 
calculated the SER constant k,, of BrC,H,CH,CrL- 
(H20j3+/*+ couple to be 24 dm3 mol-’ s-l. Applying 
the same procedure to the reaction between an outer- 
sphere electron acceptor ABTY and BrC,H,CH,- 
CrUH,O)*+ (so that an outer-sphere electron transfer 
process was assured), we calculated the k,, value to be 
18 dm3 mol-’ s-l. Considering the error carried over 

TABLE 1. Reduction potentials, self-exchange rate constants and 
cross-reaction rate constants a pertaining to the oxidation of 4- 
BrC,H,CH,CrUH,OJzf 

Oxidant k,, k R:X 
(dm3 mol-’ s-l) &r3 rnol-‘~-~) (V) 

IrC12,- 
ABTS’- 

(1.29+0.18)x lo4 2.0x 10s 1131 0.892 181 
(1.51+0.17)x 102 2.2 x 109 0.43 171 

(unpublished 
result) 

a At 25°C [H+]= 1.0~10-~ M, and I = 2.0 M maintained with 
‘sodium perchlorate. 

from the estimate of E” = 0.8 V for the organochromi- 
urn couple and the error added in by using the simpli- 
fied Marcus equation, we believe that the two calcu- 
lated k,, values are actually in good agreement with 
each other. This agreement is in accordance with the 
notion that chromium(II1) complexes are substitution- 
ally inert and usually react with oxidants via the outer- 
sphere electron transfer mechanism. We adopt the 
value k,, = 2 x 10 dm3 mol-’ s-l. With the uncer- 
tainty in the E” value of the BrC,H,CH,CrL- 
(H20j3+/*+ couple, the SER constant may be better 
expressed as a range: 5 x lo-* dm3 mol-’ s-l <k,, < 
7 x lo2 dm3 mol-’ s-‘. 
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